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Società Italiana di Fisica
Springer-Verlag 2002

Onset of instabilities in self-pulsing semiconductor lasers
with delayed feedback

T.W. Carra

Department of Mathematics, Southern Methodist University, Dallas, Texas 75275-0156, USA

Received 1st August 2001 and Received in final form 28 November 2001

Abstract. We consider the deterministic dynamics of a semiconductor laser with saturable absorber that
is subject to delayed optical feedback. Alone, both the saturable absorber and delayed feedback cause
the CW output to become unstable to periodic output via Hopf bifurcations. We examine the combined
effects of these two destabilizing mechanisms to determine new conditions for the Hopf bifurcations. We
also describe the transient as the unstable CW output evolves to the oscillatory state. A main result is
that the presence of a saturable absorber can increase the sensitivity of the laser to delayed feedback.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 42.55.Ah General laser theory –
42.55.Px Semiconductor lasers; laser diodes

1 Introduction

Lasers with an intracavity saturable absorber (LSA) have
long been used to generate high-intensity pulses (see [1,2]
for background and historical references). The effect of
the absorber is to passively modulate the cavity losses so
that the LSA is “self-pulsing.” The pulsed output is of
practical interest for applications that require extremely
short high-peak-power pulses of light. Self-pulsing semi-
conductor lasers (SPSL) exhibit a high repetition rate that
ranges from hundreds of megahertz to a few gigahertz [3].
They are interesting for telecommunication and for optical
data storage using compact disc (CD) or digital versatile
disc (DVD) systems [4,5].

Delayed-optical feedback can result from reflections
off an external surface. Delayed feedback in semiconduc-
tor lasers has been successfully used for linewidth nar-
rowing and mode selection [3]. However, the stability of
the semiconductor laser’s CW output has been shown to
be very sensitive to delayed optical feedback. Lang and
Kobayashi [6] provided a theoretical description in the
form of rate equations to describe the destabilizing effect
of feedback on the laser’s CW output. Since then a large
body of work has developed investigating the onset of in-
stabilities and the progression to chaotic output referred
to as “coherence collapse” (see [7] for a review). More re-
cently, the phenomenon of LFF, or “Low-Frequency Fluc-
tuations”, which are recurrent deep drops in the laser’s
intensity, has been actively investigated (see [8] and in-
cluded references).

Part of the success in using for SPSLs in CD and DVD
systems is due to the fact that the self-pulsations reduce
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feedback-induced noise [9–11]. More recently, van Tartwijk
and San Miguel [12] have numerically investigated the ef-
fect of delayed feedback in SPSLs to better quantify the
statistical properties of the pulse amplitude and repeti-
tion rate due to stochastic noise. However, an analysis
of the combined deterministic dynamics of the SPSL and
delayed-optical feedback, to our knowledge, has not been
reported. In the present paper we report our first results
in this effort.

In this paper, we determine the conditions for the on-
set of oscillations and pulsations due to the presence of
a saturable absorber (SA) and delay-feedback (DF). Indi-
vidually, both the SA and DF cause the laser’s CW output
to become unstable through Hopf bifurcations. Our insta-
bility result is expressed in terms of deviations from the
conditions describing only the sole effect of either the SA
or DF. We use numerical simulation of rate-equations to
verify our results as well as to describe the transient dy-
namics as the instabilities develop.

We consider a modification of the well-known Lang-
Kobayashi [6] equations for semiconductor lasers subject
to delayed feedback with the additional effect of nonlin-
ear loss due to the saturable absorber. In Appendix A we
show how (1) is derived as a nondimensional version of
the model used by van Tartwijk and San Miguel [12]. We
have

dE
dt

=
1
2

[(1 + iα)D1 + (1 + iα)
A2

1 + a|E|2 − 1]E

+η exp(−iωητ)E(t− τ),

dD
dt

= γ[A1 − (1 + |E|2)D], (1)
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Fig. 1. Bifurcation diagram [29] of
the LSA without feedback (η = 0).
Solid/dotted lines are stable/unstable so-
lutions, respectively. A1th = 4.5 is the bi-
furcation of the zero steady state to the
non-zero steady state. A1lp = 4.1. A1h =
7.8 is the Hopf bifurcation to periodic so-
lutions that are unstable. Pulsating solu-
tions occur on the upper branch between
A1hlp = 9.6 and A1th, where they termi-
nate in a homoclinic orbit (A2 = −3.5,
a = 2, γ = 0.05).

where E is the electric field and D is the population inver-
sion. The parameter γ is the inversion-decay rate normal-
ized by the cavity-decay rate and A1 is due to the pump
(or injected current in the case of semiconductor lasers).
A2 < 0 is defined as the absorber-pump parameter and
a describes the relative saturability of the absorber with
respect to the active media. The linewidth enhancement
factor α is assumed to be equal for both the active and ab-
sorbing material. The feedback strength is given by η and
delay by τ , while ωη in the feedback phase is the frequency
of the solitary laser.

In previous work we documented the nondimen-
sionalized parameter values for various semiconductor
lasers [13]. The range of values of these parameters may
depend on the type of laser, but they all exhibit small
values of γ (O(10−3)); the strongly pulsating behavior of
the LSA is directly related to the small values of γ [14].
For self-pulsing semiconductor lasers, (1) can be supple-
mented by additional terms modeling nonlinear gain satu-
ration, nonlinear damping of the active and passive regions
and cross-diffusion of the carriers between active and pas-
sive regions. However, none of these additional effects is
responsible for the generation of self-pulsation and none
leads to qualitatively different dynamics [13].

Self-pulsation of the LSA without feedback (η = 0) ap-
pears through a bifurcation mechanism that we briefly re-
view for the case shown in Figure 1. The laser-first thresh-
old occurs when A1 = A1th ≡ 1 − A2, and the non-zero
steady state (NZSS) may appear through either a super-
critical or subcritical bifurcation. In Figure 1 we show the
bifurcation diagram for the subcritical case. A Hopf bi-
furcation to pulsating solutions appear on the non-zero
branch of solutions at A1h and is subcritical so that the
oscillatory solutions are unstable. The oscillations become

stable pulsations as the branch passes the turning point
at A1hlp. As A1 is decreased the oscillations become in-
creasingly pulsating with increasing interpulse periods.
The branch terminates at a homoclinic orbit of infinite
period as A1 approaches A1th. We note that the unstable
branch of oscillatory solutions serves as a basin bound-
ary between the NZSS and the pulsating solutions for
A1h < A1 < A1hlp.

In the next section we determine the steady-state solu-
tion of (1) when there is feedback (η 6= 0). We then deter-
mine the conditions for a Hopf bifurcation and discuss how
they differ from the cases of SA without DF or DF without
the SA. In Section 4 we find an approximation to the har-
monic solutions that appear as the feedback is increased.
In Section 3 we use numerical simulation to demonstrate
our results, followed by a discussion in Section 5.

2 Hopf-bifurcation conditions

To determine the new NZSS in the presence of feedback,
let E(t) = F (t) exp[iΦ(t)− ωηt] in (1):

dF
dt

=
1
2

[
D +

A2

1 + aF 2
− 1
]
F (t)

+ηF (t− τ) cos[Φ(t − τ)− Φ(t)],
dΦ
dt

= ωη +
α

2

[
D +

A2

1 + aF 2

]
+η

F (t− τ)
F (t)

sin[Φ(t− τ) − Φ(t)],

dD
dt

= γ[A1 − (1 + F 2)D]. (2)
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We look for steady-state solutions by setting
[F (t), Φ(t), D(t)] = (Fs, ωst,Ds). The zero-intensity
steady state is (Fs, Ds) = (0, A1). When the laser is at
steady state, the effect of the feedback is constant, i.e.,
F (t − τ) = Fs and cos[Φ(t − τ) − Φ(t)] = cos(ωsτ). Thus
the NZSS will be shifted by an O(η) amount. When the
pump is increased the zero-intensity steady state becomes
unstable at a value of A1 near A1th that we determine
below. The new NZSS is defined by the bifurcation
equation relating the intensity I = F 2

s to the pump:

A1 = (1 + I)
[
1− A2

1 + aI
− 2η cos(ωsτ)

]
,

Ds =
A1

1 + I
, (3)

ωs = (ωη +
α

2
)− η

√
1 + α2 sin(ωsτ + arctanα). (4)

The frequency of the electric field ωs is given by the
transcendental equation (4) and has multiple solutions
depending on the value of η; initial conditions and sta-
bility conditions generally determine which solution is se-
lected [15] in the deterministic case. The value of the pump
at the bifurcation point can be found by taking I = 0:

A1 = A1th − 2η cos(ωsτ). (5)

The bifurcation to the NZSS may be supercritical or sub-
critical depending on a and A2. It is subcritical and has
a limit point if there is a value of I = Ilp such that
dA1/dI = 0 and Ilp > 0. We find that

Ilp = − (a− 1)A2 + 1− 2η cos(ωsτ)
a[1− 2η cos(ωsτ)]

· (6)

The value of the pump at the limit point can be found
be substituting Ilp into the bifurcation equation (3).
In Figure 1 we show the complete bifurcation diagram,
steady states and periodic solutions for the LSA without
feedback. When η = 0 the zero steady state bifurcates to
the NZSS when A1 = A1th. As described above, feedback
will shift A1th and A1lp by an O(η) amount.

The stability of the NZSS is investigated by sub-
stituting (F,Φ,D) = (Fs, ωst,Ds) + (u, φ, v) into (2)
and examining the time evolution of the small pertur-
bations (u, φ, v). The resulting equations for (u, φ, v) are
linearized for (u, φ, v) � 1. The conditions for a Hopf
bifurcation are determined by looking for solutions pro-
portional to exp(iωt) and setting the determinant to zero.
The real and imaginary parts of the determinant give two
conditions for the Hopf frequency ω and the value of the
intensity I = F 2

s at the Hopf bifurcation point. The value
of the pump at the Hopf bifurcation point A1 is determine
by I using the bifurcation equation (3). When there is no
feedback (η = 0) the conditions for the LSA are relatively
simple; we state these here for reference:

γ(1 + I)(1 + aI)2 + aA2I = 0,

ω2 =
γI

(1 + aI)2
[(1 + aI)2 + (a− 1)A2]. (7)

For γ � 1 the leading-order approximation for the inten-
sity at the Hopf bifurcation is I2 = −A2/(γa) and the
Hopf frequency is ω2 = γI. The leading-order approxima-
tion for the Hopf frequency is identical to the relaxation
frequency of the solitary laser without DF or SA.

The general case of the LSA with feedback (η 6= 0)
produces a much more complicated result, which is given
in Appendix B. Similar equations have been derived for
the Lang-Kobayashi model without the effects of the SA
by Erneux [16]. The inclusion of the SA makes both ana-
lytical and numerical analysis of these equations difficult.
However, we can gain further information by examining
specific limits. We shall focus on the most generic case,
avoiding the special cases of short delay or large feedback.

We examine the Hopf conditions using the scalings I =
F 2

s = O(γ−1/2), ω = O(γ1/4), and η = O(γ1/2); these
scalings are motivated by conditions (7). To leading order
we find that,

ω = γ1/2
√
I +O(γ1/2), (8)

and

η = − γI2 +A2/a

I2 sin2(ωτ/2)[cos(ωsτ) + α sin(ωsτ)]
+O(γ3/4),

(9)

where we have recovered the scaling parameter γ into the
result. The value of the pump A1 where the Hopf bifur-
cation occurred can be found by applying the above scal-
ings along with A1 = O(γ−1/2) to the bifurcation equa-
tion (3). Similar results have been found for the case of
semiconductor lasers without saturable absorbers [15,17],
where here the pump is replaced by the deviation from
the LSA Hopf-bifurcation point. Specifically, if there is no
feedback, η = 0, the value of the intensity where the Hopf
bifurcation occurs is I2

0 = |A2|/γa (this is the leading-
order approximation to the upper Hopf-bifurcation point
for the LSA). We then define η0 = η (A2 = 0) as the Hopf-
bifurcation point in the absence of the saturable absorber.
With these definitions we may express the combined effect
of the feedback and SA as

η

η0
=
I2 − I2

0

I2
· (10)

The Hopf conditions (9) and (10) indicate that the diode-
LSA is more sensitive to feedback than a diode-laser with-
out a saturable absorber. For all values of the intensity I,
η/η0 < 1. The Hopf bifurcation occurs at values of η less
than that when there is no saturable absorption. Indeed,
close to the original LSA Hopf-bifurcation point, where
I ≈ I2

0 , only small amounts of feedback will lead to oscil-
lations. We will return to this point later.

The leading order Hopf conditions (9) and (10) are
somewhat crude for quantitative comparison with the
full problem. Equation (9) predicts branches of solutions
with well-defined minimums separated by the singular-
ities when sin(ωτ/2) = 0. These features are difficult
to identify in simulations of (1). However, we find that
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Fig. 2. Solid lines: linear-stability condi-
tion (11) with parameter values the same
as in Figure 1. For a fixed value of A1 the
envelope of the curves, highlighted with a
thick dash line, determines the feedback
level for a Hopf bifurcation. The crosses
(×) are the Hopf bifurcation points deter-
mined by direct simulation of (1).

a higher-order approximation, which we can solve numer-
ically, produces excellent results. Using the same scalings
as above we consider the two conditions

ηG1(γDI − 2ω2 cos(ωsτ)) + ω2

(
γI +

A2

aI

)
+O(γ) = 0,

ω3 − ωγI + ηG2(γID − 2ω2 cos(ωsτ)) +O(γ5/4) = 0,
(11)

where D and Gj depend on ωs and ω, and are defined
in Appendix B. Along with the steady-state equation (4)
this defines three equations for ω, I, and ωs. Subse-
quently, we will confine our analysis to the “minimum-
linewidth mode” [7,15] when ωsτ = − arctan(α) and ana-
lyze equations (11). Lastly, we mention that the numerical
results from equations (11) very accurately describe those
of the full problem equation (9), while at the same time
allow for easy identification of the dominant terms.

In Figure 2 we show the multiple solutions of (11) as a
function of the pump A1 and the feedback η. The envelope
of the multiple solutions defines the primary-Hopf bifurca-
tion, emphasize by the thick-dashed line in Figure 2, and
separate stable and unstable parameter regimes. For fixed
pump A1, if the feedback is increased above the value de-
fined by the envelope, the NZSS becomes unstable. If there
is no feedback, η = 0, the SA still causes a Hopf bifurca-
tion point that is indicated by the principal curve emerg-
ing from η = 0. Due to the saturable absorber, there is a
large overlap of the multiple solutions so that the distinct
minimums of the stability curves can not be differenti-
ated. As the pump is increased beyond the primary-Hopf
bifurcation envelope, the overlapping multiple solutions
lead to Torus bifurcations and other complex phenomena,

which are a generic phenomena of semiconductor lasers
with DF [16,18].

The analytical results are confirmed by direct numeri-
cal simulation of the full equations using the Matlab rou-
tine dde23 [19]. The results are shown in Figure 2 by
the crosses (×) that indicate the primary-Hopf bifurca-
tion for a given value of the pump. For each value of the
pump A1 we increased the feedback η until perturbations
to the system became unstable; our results are accurate
to η = ±0.0005. The shift in the Hopf bifurcation close
to A1h between the numerical results and that predicted
by (11) is reasonable for the value of γ used. As the pump
is increased the numerical simulations confirm that the
multiple solutions cannot be differentiated.

Figure 3a shows the case of the semiconductor laser
with an extremely weak SA, A2/a � 1. The dotted line
reproduces the result of Figure 2. For a fixed value of the
pump, A1, the dotted curves (A2/a = O(1)) are crossed
much sooner than the solid curves (A2/a � 1); the sat-
urable absorber reduces the necessary level of feedback for
instability. It should be noted that if A2/a = 0, then the
Hopf bifurcation is singular as A1 → A+

1th. There will not
be an instability curve continuing all the way to η = 0
because without SA and DF the solitary laser does not
have a Hopf bifurcation. We have kept A2/a 6= 0 for more
direct comparison with the A2/a = O(1) case.

The parameters γ and τ are modified in Figures 3b
and 3c, respectively. In Figure 3b γ is reduced, shifting the
curves to the right, because A1h = O(γ−1/4). In Figure 3c,
the delay time τ has been increased, producing a smooth
envelope of curves that determines the Hopf-bifurcation
point. Other than shifting the bifurcation curves or
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Fig. 3. Linear-stability curves for: (a) A2/a = −1.75 × 10−4;
(b) γ = 0.01; (c) τ = 200. (Unless noted, parameters are the
same as in Fig. 1.)

contracting/expanding the space between them, the be-
havior of the system remains the same.

3 Transient response to feedback

In the previous section, we determined the parameter con-
ditions that lead to instabilities due to the presence of
feedback. In the present section we analyze the transient
response leading to either pulsations or complex oscilla-
tions upon the initiation of feedback. Here we will con-
centrate on when A1 > A1h, when there is either bistabil-
ity, or A1h < A1 < A1hlp, when there is only the NZSS.
We have used the Matlab routine dde23 [19] for our nu-
merical simulations. We have also confirmed that our re-
sults using dde23 [19] without feedback are consistent with
higher-order numerical methods such as the Matlab rou-
tine ode45.

We first tune the laser very near the LSA Hopf-
bifurcation point A1h. In Figure 4a A1 = 8.0 and small
feedback, turned on when t = 200, leads to harmonic
solutions. The harmonic solutions can be described by a

weakly nonlinear analysis that is presented in the next sec-
tion. However, for slightly larger feedback in Figure 4b, as
the oscillations grow they collide with the branch of unsta-
ble periodic orbits related to the LSA’s unstable branch
of solutions. Subsequently, the trajectory of solutions falls
into the basin of self-pulsing solutions that quickly de-
velop.

The scenario is qualitatively similar for larger values
of the pump as shown in Figure 5b when A1 = 8.5. How-
ever, in this case much larger feedback is required to initi-
ate self-pulsations. This is because as A1 is increased the
basin for the NZSS increases relative to the basin for the
self-pulsing solutions in Figure 1. In Figure 5c, the sat-
urable absorber is removed by setting A2 = 0. Now the
only cause of instability is the DF, so there may be com-
plex oscillations but not the self-pulsing solutions due to
the SA.

Finally, in Figure 6, A1 > A1hlp so that the laser is
outside the domain of self-pulsations. Here, large feed-
back leads to complex oscillations typical of semiconduc-
tors with DF.
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Fig. 4. A1 = 8.0, and (a) η = 0.01, (b)
η = 0.02. The feedback is initially off (η = 0)
and then turned when t = 200. Near the Hopf-
bifurcation point (A1h = 7.8) small feedback
causes harmonic solutions, while larger feed-
back causes pulsating solutions. Feedback is
turned on at t = 200 and, unless noted, pa-
rameters are the same as in Figure 1.

4 Harmonic solutions

So far our analysis has concentrated on the linear stability
of the NZSS and the evolution to either pulsating or har-
monic solutions. The purpose of the present section is to
formulate a nonlinear theory for the resulting oscillations.
Previously, an asymptotic analysis based on the limits γ,
η � 1 and α � 1 has been successfully used to analyze
semiconductor lasers subject to delayed feedback and in-
jection [20–22], as well as arrays of coupled semiconductor
lasers [23], and a multimode semiconductor laser [24]. The
qualitative results for large α have shown excellent quali-
tative agreement with numerical and experimental results

for more realistic values of (α ≈ 5). We have applied a sim-
ilar analysis to equation (2) and because the asymptotic
method has been well documented in the above references,
we quote only our bifurcation result.

We look for solutions of the form

F =
√
I
(

1 +
y

α

)
eiΦ, D =

A1

1 + I

(
1 + 2

ω

α
x
)
, (12)

where (x, y) are deviations from the steady-state solutions.
We find that to leading order

x(t) = −B sin(ωt+ ψ), y(t) = −B cos(ωt+ ψ),
Φ(t) = B cos(ωt+ ψ) + φ. (13)
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Fig. 5. A1 = 8.5, and (a) η = 0.02, (b) η = 0.05. Away from
the Hopf bifurcation larger feedback is needed to cause either
harmonic or pulsating solutions. In (c) η = 0.05 (same as (b))
butA2 = 0 so that there is no saturable absorber. The feedback
is large enough to cause an instability, but pulsating solutions
are not possible. (Feedback is turned on at t = 200 and, unless
noted, parameters are the same as in Fig. 1.)
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Fig. 6. A1 = 10.0, and η = 0.15. For
A1 > A1hlp, very large feedback induces not
pulsations, but complex dynamics similar to
to semiconductors without the saturable ab-
sorber. (Feedback is turned on at t = 200
and, unless noted, parameters are the same
as in Fig. 1.)
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Fig. 7. A1 = 7.4, and η = 0.02. Effect of
feedback turned on at t = 400 on saturable
absorber-induced pulsations. (Unless noted,
parameters are the same as in Fig. 1.)

The phase variables ψ and φ are slowly evolving but are
not necessary for the present analysis. For the amplitude B
we obtain the bifurcation equation

η = − γI2 +A2/a

αI2 sin(ωτ/2) sin(ωsτ)
B

J1(2B sin(ω/τ/2))
, (14)

where ω is the approximate Hopf-bifurcation frequency
given by (8) and J1(x) is the order-1 Bessel function of
the first kind. The steady-state frequency ωs is given by
the leading-order approximation to (4) as

ωs = ωη +
α

2
+O(η). (15)

As the amplitude B goes to zero we recover the α � 1
version of the linear-stability result (9) that predicts the
bifurcation point.

The bifurcation equation (14) is analogous to
equation (3.12) in Alsing et al. [20]. For a fixed steady-
state intensity greater than the Hopf-bifurcation point
(γI2 + A2/a > 0), as the feedback η is increased, there
is a supercritical bifurcation to oscillatory solutions de-
scribed by (12). For large values of feedback, saddle-node
bifurcations to higher-amplitude solutions coexist with the
original bifurcating solution. Thus, the bifurcation equa-
tion (14) predicts that the SPSL with DF operates like
semiconductor laser with DF whose linear dissipation is
controlled by the distance from the upper Hopf-bifurcation
point (γI2 + A2/a > 0). The analysis assumes small-
amplitude solutions; thus, the conclusion is not valid for
values of A1 and η, where self-pulsations will develop.

Our analysis accounts for the nonlinear effects of the
DF, while the SA contributes as a linear dissipation term.
Indeed, without DF, the equation is singular and cannot

describe the bifurcation due to the SA alone. To simul-
taneously capture the nonlinear effects of both the DF
and the SA requires continuing the analysis to O(1/α2).
However, such an analysis is analytically intractable. Sim-
ilarly, without DF (η = 0), the nonlinear effect of the sat-
urable absorber is a subcritical-Hopf bifurcation, as shown
in Figure 1. The SA bifurcation without DF can be de-
scribed by a weakly nonlinear analysis and the derivation
of an evolution equation. Again, as in the previous case,
the nonlinear contributions of the SA and DF appear at
different orders of the perturbation analysis such that it
is very difficult to simultaneously capture their nonlinear
effects.

5 Discussion

Semiconductor lasers with feedback display numerous bi-
furcations, multistability, LFF, and chaos as the feedback
is increased. We have considered weak feedback, avoid-
ing complex phenomena, to focus on the interaction with
a saturable absorber. Also, we focused on the initial bi-
furcation from the NZSS and the resulting evolution to
oscillations, whether harmonic, complex or pulsing. We
have not discussed the asymptotic effect of feedback on
the self-pulsing solutions when A1th < A1 < A1hlp, which
can be significant. In Figure 7 we show pulsations due to
the saturable absorber both before and after the applica-
tion of feedback. The feedback affects both the amplitude
and the period of the pulsations (see also Fig. 12 in [12]),
which are critical design parameters in devices. A detailed
analysis to quantify these effects is underway.

We mention that we have used the laser with SA
(no DF) as a reference for critical points such as A1h and



T.W. Carr: Onset of instabilities in self-pulsing semiconductor lasers with delayed feedback 253

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

A
1

η

Fig. 8. Semiconductor laser with delayed
feedback and no saturable absorber A2 ≈ 0
(solid curve), and very weak saturable ab-
sorber A2 = −0.035 (dotted curve).

A1hlp (see Fig. 1). However, these are shifted by only a
small amount, O(η), when weak DF is present.

Our reference value of the nondimensional delay time
was τ = 50, which corresponds to an external cavity length
of Lext = 2 cm (τ = 2LextΓ0/c, where c is the speed of
light and from [12] we use Γ0 = 0.367 (ps)−1). As the cav-
ity length is increased, Figure 3c shows that the envelope
of the family of neutral stability curves determines the ef-
fective Hopf-bifurcation point. For short external cavities,
further analytical approximations are possible [16,25,26].
We observe from our numerical analysis of (11) that the
multiple neutral-stability curves spread in A1 and increase
in η. The Hopf-bifurcation point is determined solely by
the primary curve emanating from η = 0.

For numerical convenience we have used a larger than
normal value for the decay rate γ = O(10−2) in our sim-
ulations; for semiconductor lasers, γ is typically O(10−3).
Our choice dramatically improves the accuracy as well as
the speed of the simulations, because the period of the
self-pulsing solutions scales as O(γ−1/4). Our results are
not changed for smaller γ and all conclusions remain qual-
itatively valid (see Fig. 3b).

A main result of our analysis is the prediction that the
saturable absorber increases the sensitivity of the semi-
conductor laser to feedback from the point of view of
the onset of oscillations; this is in contrast to the regime
of self-pulsations for A1th < A < A1hlp, whose noise-
sensitivity may be reduced by feedback [12]. To elucidate
this point we consider the case of “parasitic” saturable
absorption. The linear-stability results for this case are
shown in Figure 8. The solid curve is the prediction of the
Hopf bifurcation due to feedback when A2 � 1 in (11) and
shown in Figure 3a. The dotted curve is for A2 = −0.035,
which is one hundred times smaller than typical values.
The first threshold, A1th = 1−A2, will shift only a small

amount. However, an O(1) interval of self-pulsations will
appear because A1h = O(γ−1/4). To avoid the self-pulsing
regime the laser is tuned outside this interval, where the
difference between the curves shows the increased sensi-
tivity to feedback.

Also interesting is the case of a weak SA defined by
a � 1, which indicates that the absorber requires very
intense fields to saturate. For small a the typical bifurca-
tion scenario is different than depicted by Figure 1. In-
stead, the NZSS appears through a forward/supercritical
bifurcation, and there are lower and upper Hopf bifurca-
tions connecting a branch of periodic solutions (see Fig. 2
in [27]). As the pump is increased, the zero stead-state
losses stability to CW output. We would like to know
what is the combined effect of DF and the SA as the
pump is increased, and the laser nears the lower Hopf
bifurcation point. We have reanalyzed the linear stability
conditions for the case of a = O(γ). Without feedback, the
Hopf bifurcation occurs when I = I0 = 1/[(a/γ)|A2| − 1].
Positivity determines a minimum value of A2, which indi-
cates that for a weak SA the absorber requires a minimum
amount of reverse pump to induce oscillations. The effect
of DF without the SA is given by η0 as in (10). Then
for DF with a weak SA we have

η

η0
=

1
I
− 1
I0
, I ≤ I0. (16)

The condition I ≤ I0 is required because we are increasing
the pump A1, hence I, until the lower Hopf bifurcation is
reached at I0. There is a critical value Ic ≡ I0/(1 + I0)
where η/η0 = 1. For I < Ic, η/η0 > 1, indicating that the
weak SA is strongly dissipative and more than normal DF
is required to induce oscillations. This is because the field
is too weak for the saturation term to have an effect. For
I > Ic, η/η0 < 1, indicating that the weak SA is again
causing increased sensitivity to DF.
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The high-intensity Hopf bifurcation at A1h may be su-
percritical for some parameter values. In this caseA > A1h

is outside the domain of self-pulsing solutions. However,
our results for the bifurcation point (9) and the bifurca-
tion equation (3) are still valid. In this regime, the SA will
increase the sensitivity to DF as described above.
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Thompson, and Didier Pieroux for useful discussions concern-
ing the numerical solution of DDEs. This work was supported
by the National Science Foundation Grant No. DMS-9803207.

Appendix A: Derivation of model

Van Tartwijk and San Miguel [12] proposed the following
model for the LSA subject to delayed feedback:

dE
dt

=
1
2

[(1 + iα)Γ1ξ1(N1 −Nt1)

+(1 + iα)Γ2ξ2(N2 −Nt2)− Γ0]E
+γ exp(−iω0τ)E(t− τ),

dN1

dt
=
J

e
− N1

T1
− Γ1ξ1(N1 −Nt1)|E|2,

dN2

dt
= −N2

T2
− Γ2ξ2(N2 −N21)|E|2, (17)

where E is the electric field and N1 and N2 are the elec-
tron densities for the active and absorbing regions (we
refer the reader to [12] for a description of each of the
physical constants). In the present study we ignore pos-
sible diffusion between the active and absorbing regions,
nonlinear recombination effects so that Tj are constants,
and we assume that the linewidth-enhancement factor α
is equal in the active and absorbing media.

Introducing the new variables

Ẽ =
√
τ1Γ1ξ1E, Dj =

Γjξj
Γ0

(Nj −Ntj) and T = Γ0t

(18)

and constants

γj =
1

TjΓ0
, Aj =

TjΓjξj
Γ0

(
δj1

J

e
− Ntj

Tj

)
, a =

T2Γ2ξ2
T1Γ1ξ1

,

η =
γ

Γ0
, τ̃ = Γ0τ, ωη =

ω0

Γ0

(19)

into equations (17), we obtain

dẼ
dt

=
1
2

[(1 + iα)D1 + (1 + iα)D2 − 1]Ẽ

+η exp(−iωη τ̃)Ẽ(t− τ̃),
dD1

dt
= γ1[A1 − (1 + |Ẽ|2)D1],

dD2

dt
= γ2[A2 − (1 + a|Ẽ|2)D2]. (20)

Subsequently, we drop the tildes for notational conve-
nience. Finally, we obtain (1) if we adiabatically (γ2 � γ1)
eliminate D2 and let D = D1, γ = γ1.

For the LSA without feedback, equation (1), rewrit-
ten in terms of the intensity I = |E|2, has been studied
in detail in [28] and was shown to possess many dynam-
ical features of equation (20). Because of the additional
complexity of obtaining both analytical and numerical re-
sults in the presence of feedback, we focus our analysis the
simpler set of equations (1).

Appendix B: Hopf bifurcation conditions

Linear stability of the NZSS produces a characteristic
equation for the eigenvalue λ; the delay results in a charac-
teristic equation that is transcendental, having an infinite
number of solutions. The Hopf-bifurcation point is found
by setting λ = iω and simultaneously solving the real and
imaginary parts of the characteristic equation. The two
conditions are

m22[η2(G2
1 −G2

2) + 2η cos(ωsτ)G2ω − ω2]
+ ω2ηG1[ηG2 − ω cos(ωsτ)]− ηG1D(m12m21 −m22m11)

+ ωm11(ηG2D − ω) = 0

− ω[η2(G2
1 −G2

2) + 2η cos(ωsτ)G2ω − ω2]
+m222ηG1[ηG2 − ω cos(ωsτ)] − ωm11ηG1

− (m12m21 −m22m11)(ηG2D − ω) = 0 (21)

where

D = cos(ωsτ) − α sin(ωsτ), G1 = cos(ωτ) − 1,

G2 = − sin(ωτ), m11 = − aA2F
2
s

(1 + aF 2
s )2

,

m12 =
Fs

2
, m21 = −γ 2A1Fs

(1 + F 2
s )
,

m22 = −γ(1 + F 2
s ), m31 =

α

Fs
m11,

m32 =
α

2
· (22)
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